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Abstract
Effects of magnetic impurity concentration and spin-projection fluctuations
on the exciton scattering, the exciton bandwidth, and the light reflection,
transmission, and absorption spectra of diluted magnetic semiconductor crystals
with quantum wells in an external magnetic field were studied. The fluctuations
of the distributions of both single and pairs of impurity centres as well as the
destruction of antiferromagnetically coupled pairs by a high magnetic field
were taken into account. Calculations were performed for the quantum wells
(Cd, Mn)Te/CdTe/(Cd, Mn)Te. It was shown, that: (i) the contribution of the
exciton scattering to the exciton bandwidth is considerable—it is comparable
with the experimentally observed bandwidths for the systems under study;
(ii) the bandwidth increases as the magnetic field rises for the σ−-component
of the exciton transition, while the bandwidth decreases for the σ +-component.
In particular, the exciton scattering probability drops abruptly when the total
magnetic moment of the antiferromagnetically bound pair appears, due to
the magnetic field-induced destruction of the pairs. The destruction of the
pairs leads to narrowing of the σ +-component of the exciton transition. These
peculiarities in the magnetic field dependence of the exciton bandwidth were
explained by the coherent summation of spin-dependent and spin-independent
parts of the interaction between the exciton and the impurities.

1. Introduction

Optical band parameters (broadening, intensity, etc) of crystals with quantum wells determine
the role which these structures play in different types of device. The band broadening is
determined essentially by the technological conditions of the crystal growth, namely the
presence of defects, interface structure, inhomogeneities, strain effects, etc. However, the
overwhelming majority of low-dimensional quantum systems are grown from a basis of
semiconductor alloys and the compositional fluctuations of these alloys must contribute
considerably to the optical bandwidth. The effect of the compositional fluctuations on the
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excitonic spectra has been studied in [1, 2], where it was shown that the contribution of the
fluctuations to the excitonic band broadening is important.

In diluted magnetic semiconductors the strong exchange interaction between the charge
carriers and the localized magnetic ions leads to significant changes in the energy positions
of the exciton lines in the external magnetic field. Therefore the fluctuations of the magnetic
impurity distribution must have a strong influence on the magnetic field dependence of the
optical band parameters. In most of the analyses of the excitonic spectra of diluted magnetic
semiconductor crystals, the impurity distribution has been assumed to be homogeneous.
Compositional fluctuations lead to inhomogeneous impurity distributions like that shown,
as an example, in figure 1. Such an inhomogeneous distribution must result in quantitative
changes of the band position as well as in the band broadening due to the exciton scattering
on the compositional fluctuations. The diluted magnetic semiconductors are particularly
attractive for study because in these crystals the bandwidth change must depend on the external
magnetic field, which offers the possibility of tuning the exciton band parameters through the
application of magnetic fields. In contrast to the case for non-magnetic semiconductors, in
the semimagnetic alloys the band broadening is caused not only by the impurity concentration
fluctuations, but also by the impurity spin-projection fluctuations. In the present paper the
effect of the impurity concentration and spin-projection fluctuations on the optical bandwidths
in the reflection and absorption spectra of diluted magnetic semiconductors containing quantum
wells is analysed.

CdMnTe CdMnTeCdTe

Figure 1. A schematic illustration of inhomogen-
eous magnetic ion distribution in the heterostructure
CdMnTe/CdTe/CdMnTe.

To study the band broadening and the band shift due to the fluctuations, we have used
a method developed for bulk materials: in [3] for the Frenkel excitons in molecular crystals
with isotopic impurities and in [4] for the Wannier excitons in semiconductors with charged
impurities. According to this method, the probability of exciton scattering on the impurity
concentration fluctuations is studied and the exciton lifetime with respect to the scattering
determines the width of the exciton band. In the zero-order approximation the interaction
of the exciton with the impurities is calculated with the assumption of a uniform impurity
distribution with the average concentration. Deviations of the concentration from the average
value (fluctuations) lead to exciton scattering, which influences the exciton bandwidth.

We will show that the contribution of the fluctuations to the bandwidth is considerable;
it depends strongly on the magnetic field—moreover, the width of some bands decreases as
the magnetic field rises. Unlike in the previous paper [5], in the present one we have taken
into account the exciton scattering on the pairs of antiferromagnetically coupled spins, have
studied absorption spectra, and have used realistic values of parameters for (Cd, Mn)Te/CdTe/
(Cd, Mn)Te quantum wells. We would like to note that we have not taken into account the
exciton band narrowing due to magnetic polaron formation, because magnetic polaron effects
do not occur in reflection and absorption [6].
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2. Exciton scattering on the magnetic impurity and spin-projection fluctuations in
diluted magnetic semiconductor quantum wells—magnetic field-induced suppression of
the fluctuations

Let us consider a (Cd, Mn)Te/CdTe/(Cd, Mn)Te quantum well. In this case the magnetic
impurities are localized in the barrier layers. The Hamiltonian of the exciton in the system
under study can be written as

H = H0 +Hint (1)

where H0 is the traditional free-exciton Hamiltonian, including the kinetic energy of the
electron and the hole, the Coulomb interaction, and the interaction of the exciton with the
external magnetic field; Hint describes the interaction of the carriers with the magnetic
impurities. HereHint consists of spin-dependent and spin-independent parts. The Hamiltonian
of the interaction of the exciton with the magnetic ions is given by

Hint =
∑

�n

1

N0

[
(�e − Je �Se · �S�n)δ(�re − �n) + (�h + Jh �Sh · �S�n)δ(rh − �n)

]
x�n (2)

whereN0 is the concentration of cationic lattice sites, �n is the coordinate of the cationic lattice
site, �re (h) is the position of the electron (hole), �e (h) is the potential of the non-magnetic
interaction of the electron (hole) with the impurity ion, Je (h) is the exchange integral for the
electron (hole), �Se (h) is the spin of the electron (hole), �S�n is the spin of the magnetic ion, x�n = 0
if there is a Cd2+ ion at the lattice site �n, and x�n = 1 if the site is occupied by a Mn2+ ion.

Since the exciton radius in the semiconductors studied exceeds considerably the distance
between the impurity centres for typical concentrations, the exciton interacts with a large
number of the impurities. Therefore, using the traditional mean-field approximation the
Hamiltonian (2) is replaced by the averaged one, where x�n and �S�n are replaced by their
average values. But since expression (2) contains the product x�n �S�n, the values of x�n and
�S�n are independent only for the single-impurity centres even for statistically equiprobable
distribution of the impurities. The point is that there are clusters of antiferromagnetically
paired spins besides single isolated ions Mn2+ in the diluted magnetic semiconductor [7]. Due
to the antiferromagnetic interaction, the spins of the nearest-neighbouring magnetic ions are
oriented in antiparallel directions in the weak magnetic field and at low temperatures. In the
mean-field approximation these coupled spins do not make a contribution to the magnetization
of the crystal, but their influence becomes apparent in strong fields. Thus, there is a strong
correlation of the values of x�n and �S�n for the magnetic ions at the nearest-neighbour sites and
therefore it is worthwhile to split the Hamiltonian (2) into parts describing the interaction of
the exciton with the singles, pairs, triples and higher-order centres. After the regrouping the
Hamiltonian (2) can be written as

Hint =
∑

�n

1

N0

{
[(�e − Je �Se · �S(1)�n )δ(�re − �n) + (�h + Jh �Sh · �S(1)�n )δ(rh − �n)]x(1)�n

+
1

2
[(2�e − Je �Se · �S(2)�n )δ(�re − �n) + (2�h + Jh �Sh · �S(2)�n )δ(rh − �n)]x(2)�n

}
(3)

where �S(1)�n is the spin of the single ion, �S(2)�n is the total spin of the pair, x(1)�n describes the

occupation of the cation sites by the single impurity ions, x(2)�n describes the belonging of the
site to the cluster. Here we assume that for the low impurity concentration, the probability
of the formation of triples and higher-order clusters is small. We also neglect the interaction
of the single ions with the paired ones. In the Hamiltonian (3), �S(1)�n fluctuates independently

of x(1)�n , and �S(2)�n fluctuates independently of x(2)�n . The coefficient 1/2 in the second item of
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(3) appears because the cluster is counted twice due to the summation over �n. In (3) we also
assume that the exciton wave function changes slightly within the limits of the cluster.

The numbers of sites occupied by single and paired ions can be expressed as

x
(i)

�n = x(i) + δx(i)�n S
(i)

z,�n = S̄(i)z + δS(i)
z,�n. (4)

Here i = 1, 2, x(1) and x(2) denote the average values of the relative concentrations of the
single and paired ions, S̄(1)z is the average value of the single-spin projection on the direction
of the magnetic field (along the z-axis), S̄(2)z is the average value of the spin projection of the

pair, and δx(1)�n , δx(2)�n , δS(1)
z,�n, and δS(2)

z,�n denote the fluctuations of the corresponding values. For
the isolated spin,

S̄(1)z = −SB5/2

[
5
2gµBH

kBT

]

where

B5/2(y) = 6

5
coth

(
6

5
y

)
− 1

5
coth

(
y

5

)

is the Brillouin function, S = 5
2 , kB is the Boltzmann constant, T is the temperature. The

expression for S̄(2)z is given below.
Neglecting the clusters containing more than two antiferromagnetically coupled ions, we

assume that in the crystal with the average relative impurity concentration x the average relative
concentration of the single ions is equal to x(1) = x(1 − x)N ≈ x(1 −Nx) and that for paired
ions is equal to x(2) = Nx2; N = 12 is the number of nearest-neighbouring cationic sites [7].

Using (4), the Hamiltonian (1) can be written as

H = H̄0 +�H

where H̄0 = H0 + H̄int ; H̄int is the Hamiltonian of the interaction between the exciton and the
impurities in the quantum well with the semimagnetic barriers, in the mean-field approximation,
and �H describes the fluctuations:

H̄int =
∑
i=1,2

(x(i)V (i)
e �(|ze| − L/2) + x(i)V (i)

h �(|zh| − L/2)) (5)

�H =
∑

�n

{
x(1)V δS

(1)
z,�n +W(1) δx

(1)
�n + V δS(1)

z,�n δx
(1)
�n

+
1

2

[
x(2)V δS

(2)
z,�n +W(2) δx

(2)
�n + V δS(2)

z,�n δx
(2)
�n

]}
(6)

where

V = − 1

N0
(JeSz,eδ(�re − �n)− JhSz,hδ(�rh − �n))

W(i) = 1

N0
(V (i)

e δ(�re − �n) + V (i)
h δ(�rh − �n))

V
(1)
e (h) = (�e (h) ∓ Je (h)Sz,e (h)S̄

(1)
z )

V
(2)
e (h) = 1

2
(2�e (h) ∓ Je (h)Sz,e (h)S̄

(2)
z ).

As has been mentioned above, when the impurity concentration is high, the exciton interacts
with a large number of ions and ‘feels’ their average concentration. Therefore for the analysis
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of the exciton spectra the exciton–impurity interaction in the form H̄int is usually used. In the
present paper we have taken into account fluctuations, which are described by �H .

For calculations we have used the following form of the variational wave function of the
confined exciton in the quantum well with the Hamiltonian H̄0:

��k(�re, �rh) = 1√
S

ei�k· �R!( �ρ, ze, zh) (7)

!( �ρ, ze, zh) = fe(ze)fh(zh)

√
2

πλ2
e−ρ/λ (8)

where fe (h)(ze (h)) is the wave function of the lowest electron (hole) subband in the quantum
well, �re (h) = ( �ρe (h), ze (h)), �k and �R are the wave vector and the position of the exciton centre of
mass in the plane of the layers, z is the direction of crystal growth and of the applied magnetic
field. The fluctuations lead to exciton scattering with change of the two-dimensional wave
vector �k. Since the exciton bandwidth greatly exceeds the energy of the exciton–impurity
interaction, the perturbation theory approximation may be used to calculate the relaxation
time τ�k:

h̄

τ�k
=

∑
�k′
W�k,�k′ (9)

whereW�k,�k′ is the probability of the exciton scattering from the �k-state to the �k′-state calculated
with the wave functions (7), (8) and perturbation Hamiltonian (6). We would like to note that the
spin-dependent scattering of the conduction electrons on magnetic ions in bulk semimagnetic
crystals was investigated in [8].

The relaxation time obtained was averaged with respect to impurity concentration and
spin-projection distributions assuming these distributions to be chaotic:

〈δ x(1)�n , δx
(1)
�m 〉 = x(1)(1 − x(1))δ�n, �m

〈δx2
�n, δx

(2)
�m 〉 = x(2)δ�n, �m

〈δS(i)
z,�n, δS

(i)

z, �m〉 = 〈(δS(i)z )2〉δ�n, �m.

(10)

Below, we will consider the cases of weak and high magnetic fields separately. Here ‘weak
field’ means a field which is insufficient to unlock the antiferromagnetically bound pairs.

2.1. Weak magnetic fields

It is well known that in diluted magnetic crystals in a weak magnetic field at low temp-
erature the spin of the pairs of nearest-neighbour magnetic ions is compensated due to the
antiferromagnetic interaction. Because of this, the average value of the total spin of such a
pair, S̄(2)z , in (4), (5) is equal to zero. Therefore the spin-independent part of the interaction of
the carriers with all of the magnetic ions contributes to the linewidth studied, while the spins
of the single ions only result in exciton scattering.

Calculations of the value h̄/τE , where E is the kinetic energy of the exciton movement
in the plane of the heterostructure layers, were performed numerically for the CdMnTe/CdTe/
CdMnTe heterostructure with x = 0.05 and T = 2 K. The following parameters were used
[9]: the total-energy band-gap discontinuity dEg(x) = 1.592x eV, �e = (1 − α̃) dEg/dx,
�h = α̃ dEg/dx, α̃ = 0.4; the effective masses of the electron and the heavy hole are equal
to me = 0.096 m0, mhh = 0.64 m0, where m0 is the mass of the free electron; the dielectric
constant ε = 9.7, Je = 0.22 eV, Jh = −0.88/3 eV.
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The calculated magnetic field dependence of the reverse relaxation time h̄/τE forE = 0 is
depicted in figure 2. The broadening of the excitonic band caused by the scattering mechanism
studied depends essentially on the magnetic field intensity. Also, the magnetic dependence
is different for the σ−- and σ +-components of the exciton transition: h̄/τE increases as the
field rises in the case of the σ−-transition and decreases as the field increases for the σ +-
transitions. To explain this result it should be noted that for the spin orientation corresponding
to the σ−-component the spin-dependent part of the exciton–impurity interaction adds to the
spin-independent one, while for the σ +-component they tend to compensate each other. In
other words, there is a magnetic field-induced suppression of the fluctuation potential and a
corresponding narrowing of the σ +-component of the exciton lines in the diluted magnetic
semiconductor quantum wells.

0,0 0,5 1,0 1,5 2,0 2,5 3,0

1

2

3

4

5

L=30A

L=40A

L=20A

H, T

h/τ, meV

Figure 2. The reverse relaxation time for the σ−-polarization
(solid line) and σ +-polarization (dashed line) as functions of the
magnetic field at E = 0 for various values of the well width and
x = 0.05.

This effect increases with the decrease of the well width because the probability of wave-
function penetration into barrier layers containing the scattering magnetic impurity rises. It
should be noted that some experimental evidence of excitonic band narrowing with increase
of the magnetic field intensity in bulk semimagnetic semiconductors was reported in [10]. As
was mentioned above, in the semimagnetic crystal the magnetic polaron formation leads to the
exciton luminescence bandwidth narrowing [6], but this effect does not occur in the reflection
and transition spectra, which are studied in our paper. In the case studied, the line narrowing
is connected with a different mechanism: competition between the spin-dependent and spin-
independent interaction of the exciton with the magnetic impurities. It is possible that the
mechanism that we considered takes place also in luminescence spectra. But comparison of
the contribution of this mechanism to the linewidth with the contribution of the polaron effect
needs additional investigation.

2.2. High magnetic fields

Interesting features are observed in the magnetic field dependence of the relaxation time in high
magnetic fields. As noted above, in low fields the spin-dependent interaction contributes to
the linewidth only for single magnetic ions, because the average spin of the pairs is vanishing.
For the σ +-transition, the potential of the exchange interaction of the carriers with the single
impurities compensates the non-magnetic interaction more and more as the magnetic field H
rises, which results in the decreasing of the exciton scattering probability h̄/τ�k . At H > 3 T
the magnetization of the single ions becomes saturated and h̄/τ�k is practically unchanged as
H rises (figure 3). Further increase of the magnetic field intensity leads to the destruction of
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1,0
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3,5
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Figure 3. The magnetic field dependence of the
reverse relaxation time for the σ +-component of the
exciton transition for E = 0 in the quantum well
with L = 20 Å, x = 0.05, T = 1.6 K.

the antiferromagnetically coupled pairs of spins and step-like change of the average value of
the pair spin projection as well as the sample magnetization. Thus in high magnetic fields pair
centres begin to contribute to the exciton scattering.

In order to calculate the average spin projection of a pair, we have taken into account
that the Hamiltonian of the pair of magnetic ions coupled by the Heisenberg interaction in the
magnetic field H has the following energy levels [7]:

E(ST ,m,H) = −1

2
J1[ST (ST + 1)− 2S(S + 1)] + gµBmH.

Here, S = 5
2 , m = −ST ,−ST + 1, . . . , ST , 0 � ST � 2S, J1 = −22.2 K [11] is the nearest-

neighbour exchange constant, g = 2 is the g-factor of the Mn2+ ions,µB is the Bohr magneton.
Thus, the average spin projection for the pair is given by

S̄(2)z =
[ 5∑
ST=0

ST∑
m=−ST

m exp

(
−E(ST ,m,H)

kBT

)]/[ 5∑
ST=0

ST∑
m=−ST

exp

(
−E(ST ,m,H)

kBT

)]
.

In figure 3 we display the results of the relaxation time calculations for the exciton
scattering on the both single and pair centres. The first magnetization step connected with
the antiferromagnetic pair destruction occurs at H(1) = |J1|/gµB = 16.5 T. In all, the pair
magnetization has five steps with H(n) = nH(1), n = 1, 2, 3, 4, 5 [7]. This leads to the step-
like decrease of the exciton scattering probability and, consequently, the bandwidth of the
σ +-component of the exciton transition.

Thus, we again see an interesting phenomenon, where the inclusion of the new scattering
mechanism results in a decrease of the scattering probability. As has been explained above
for the scattering on the single centre, this is connected with the coherent summation of two
interactions: spin dependent and spin independent.

The narrowing of the exciton luminescence bands and, particularly, the step-like decrease
of the bandwidth in high magnetic field were observed experimentally in the semimagnetic
quantum wells ZnSe/Zn(Cd, Mn)Se [11].

3. The effect of compositional fluctuations on reflection and absorption spectra in
diluted magnetic semiconductor quantum wells; magnetic field-induced narrowing of
the exciton band σ+-component

Let us consider the effect of the magnetic impurity concentration and spin-projection
fluctuations on the spectra of the light reflection and the absorption by the quantum well
with semimagnetic barriers. The calculations are simplified if the well width is smaller than
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the wavelength, which holds true for most cases. This approximation was used in [12], where
the electromagnetic wave damping in a crystal was taken into account phenomenologically.
Below, we calculate the reflection and absorption coefficients of the light in the quantum well,
taking into account the frequency dependence of the damping due to the exciton scattering on
the fluctuations.

We will suggest that the light wave frequency is close to the resonance frequency of
the exciton transition in the quantum well. Using traditional theory of the interaction of the
electromagnetic field with a system, we will find the current of polarization connected with
the creation of the excitons for normal incidence for a linear approximation to the intensity of
the electric field:

�J (z) = i
e2| �pcv|2
m2

0ωh̄

(
!(0, z, z)

∫
!(0, z′, z′) �E(z′) dz′

)/
[ω − ω0 +�(ω) + i0(ω)] (11)

whereω andω0 are the light and resonance frequencies respectively, �pcv is the interband matrix
element of the momentum,0(ω) is the exciton damping,�(ω) is the resonance frequency shift,
caused by the exciton scattering, 0(ω) = 00 + 1/[2τ(ω)], τ(ω) is the relaxation time (9) for
the exciton due to the scattering under study, 00 takes into account other mechanisms of
wave damping.

The current density (11) is non-zero in the vicinity of the quantum well. If the well width
is considerably smaller than the wavelength, the influence of the quantum well may be taken
into account via introduction of the surface polarization current [13]:

�I = σsurf �E (12)

where

�I =
∫

�J (z) dz

σsurf = i
ωLT ωεa

3
B

4

(∣∣∣∣
∫
!(0, z, z) dz

∣∣∣∣
2)/

[ω − ω0 +�(ω) + i0(ω)].

Here, σsurf is the surface conductivity, ωLT is the longitudinal–transverse splitting, ε is the
dielectric constant, aB is the bulk Bohr radius.

To determine the coefficients of the amplitude reflection rQW , the transmission amplitude
tQW , and the absorption A, one can use the boundary conditions for the Maxwell equations in
the presence of surface conductivity (12) [13]:

rQW = (4π/c)σsurf
2n + (4π/c)σsurf

= i00

ω − ω0 +�(ω) + i00 + i0(ω)

tQW = 2n

2n + (4π/c)σsurf
= ω − ω0 +�(ω) + i0(ω)

ω − ω0 +�(ω) + i00 + i0(ω)

(13)

where

00 =
(
πωLT ω

√
εa3

B

∣∣∣∣
∫
!(0, z, z) dz

∣∣∣∣
2)/

(2c)

A = 1 − |rQW |2 − |tQW |2.
(14)

Here n is the bulk refraction coefficient.
The amplitude reflection coefficient for reflection from CdMnTe crystal containing a

quantum well at a distance d from the crystal surface can be written as

r = r0 + rQW eiϕ

1 + r0rQW eiϕ
(15)



Magnetic field dependence of the exciton bandwidth in diluted magnetic semiconductors 5643

where

ϕ = ω

c

√
ε(2d + L).

r0 is the reflection coefficient at the surface of the crystal and L is the well width.
The following parameters for the calculations of the reflection R = |r|2 and absorption

spectra for normal incidence of light for the crystal containing a quantum well were used:
h̄ωLT = 1.25 meV [12], h̄00 = 0.25 meV, the energy gap for CdTe Eg = 1.606 eV [9].

The dependence of the normal-incidence reflection coefficient on the incident light
frequency for the CdMnTe/CdTe/CdMnTe quantum well with the width L = 30 Å and
x = 0.05 is shown in figure 4. It can be seen from this figure that the scattering studied
leads to an appreciable change of the bandwidth and to a resonance energy shift, which depend
on the magnetic field.

-6 -4 -2 0 2 4 6

0,1

0,2

0,3

hω -hω0i, meV

H=3T,σ+

H=3T,σ-

R

Figure 4. Normal-incidence reflection spectra for the quantum well with L = 30 Å, x = 0.05,
d = 413 Å (ωi0 is the exciton resonance frequency in the magnetic field H = 3 T: ω−

0 for the
σ−-transition and ω+

0 for the σ +-transition).

The effect of the magnetic impurity concentration and spin-projection fluctuations
manifests itself more clearly in the absorption spectra of the quantum well layer. In figure 5
the broadening of the σ−-component and the narrowing of the σ +-component of the excitonic
band can be seen; the effect depends considerably on the well width.

4. Conclusions

In this paper we have considered the simplest mechanism of exciton scattering, which is always
operative in alloys: the exciton scattering on the fluctuations of the impurity concentration
and spin projection. There are inhomogeneities of the impurity distribution and defects of
technological character, which result in band broadening too. However, the calculations
performed in this paper show that the contribution of these fluctuations to the broadening is
comparable with the experimentally observed bandwidths. Thus the compositional fluctuations
are an important cause of exciton band broadening.
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Figure 5. Normal-incidence absorption spectra for the quantum wells withL = 30 Å andL = 40 Å;
x = 0.05, H = 3 T.

We should note the distinguishing feature which appears in the magnetic dependence of
the band broadening in the diluted magnetic semiconductors. There is coherence in the exciton
scattering on the spin-dependent and spin-independent parts of the interaction of the exciton
with the magnetic impurities. As the result, the bandwidth increases as the magnetic field
increases for the σ−-component of the spectra, while it decreases for the σ +-component. In
particular, if an antiferromagnetically coupled pair is destroyed by the magnetic field, this
gives rise to a magnetic interaction of the exciton with the pair which compensates the spin-
independent interaction and, therefore, leads to a decrease of the width of the σ +-component.
Therefore, we may conclude that it is possible to tune the bandwidth through the application
of a magnetic field to diluted magnetic semiconductors.
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